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Over the last 40 years, thousands of asymmetric catalytic reac-
tions have been invented in accord with the increasing need for
enantiopure medicinal agents and the rapid advancement of the field
of chemical synthesis.1 Remarkably, however, the vast majority of
these enantioselective processes are derived from a small number
of long-established activation modes (e.g., Lewis acid catalysis,2

σ-bond insertion,3 π-bond insertion,4 atom-transfer catalysis,5 and
hydrogen-bonding catalysis6). A critical objective, therefore, for
the continued advancement of the field of asymmetric catalysis is
the design and implementation of novel activation modes that enable
the invention of unprecedented transformations. Recently, our labor-
atory introduced a new mode of organocatalytic activation, termed
singly occupied molecular orbital (SOMO) catalysis,7-9 that is
founded upon the mechanistic hypothesis that one-electron oxidation
of a transient enamine intermediate (derived from aldehydes and
chiral amine catalysts) will render a 3π-electron SOMO-activated
species that can readily participate in a range of unique asymmetric
bond constructions.10 In our original SOMO studies,7 we docu-
mented the first direct and enantioselective allylic alkylation of
aldehydes (eq 1). In this Communication, we further advance this
activation concept to describe the first asymmetric aldehyde
R-enolation, a protocol that allows direct access to enantioenriched
γ-ketoaldehydes from simple aldehydes, enolsilanes and a com-
mercial catalyst (eq 2).

Design Plan.We proposed that condensation of imidazolidinone
catalyst1 with a simple aldehyde (e.g., propanal) in the presence
of a suitable oxidant should provide the putative radical cation2.
Addition of an accompanying enolsilane to theR-position of 2
would then render anR-OTMS carbon-centered radical that should
rapidly participate in a second oxidation event11 to generate an
oxocarbenium ion that, upon hydrolysis of the silyl group, will
furnish the requisiteR-substituted-γ-ketoaldehyde. On the basis of
DFT calculations12 we proposed that catalyst1 should selectively

form a SOMO-activated cation (DFT-2) that projects the 3π-electron
system away from the bulkytert-butyl group, while the carbon-
centered radical will selectively populate an (E)-configuration to
minimize nonbonding interactions with the imidazolidinone ring.
In terms of enantiofacial discrimination, the calculated structure
of DFT-2 reveals that the benzyl group on the catalyst system will
effectively shield theRe-face of the radical cation, leaving theSi-
face exposed to enolsilane addition.

Our enantioselective organocatalytic SOMO enolation was first
evaluated using enolsilane3, imidazolidinone catalyst1, and a series
of R-substituted aldehydes (Table 1, eq 3). Initial investigations
revealed that the introduction of 2 equiv of the oxidant ceric
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Table 1. Organocatalytic Enolation: Scope of the Aldehyde
Substrate

a Enantiomeric excess determined by chiral SFC analysis.
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ammonium nitrate (CAN), 2 equiv of H2O and 2 equiv of 2,6 di-
tert-butyl pyridine (DTBP) is necessary to achieve high levels of
enantioselectivity and reaction efficiency.13 As revealed in Table
1, variation in the steric contribution of the radical cation substituent
(R ) hexyl, cyc-hexyl, 4-piperdyl entries 1, 3, and 6) is pos-
sible without substantial loss in yield or enantiocontrol (74-85%
yield, 90-95% ee). Moreover, a variety of chemical functionalities
appear to be inert to these mild oxidative conditions including
olefins, aryl rings, and carbamates (entries 2, 4, and 6, 77-92%
yield, 91-95% ee).

As highlighted in Table 2, a wide array ofπ-rich enolsilanes
will readily participate as somophiles in this new catalytic enolation
protocol (entries 1-8). For example, alkyl, vinyl, and aryl substi-
tuted silyl enolethers can be tolerated without loss in reaction
efficiency or enantiocontrol (entries 1-8, 55-85% yield, 86-96%
ee). Moreover, significant latitude in the steric demand of the somo-
philic substituent can be accommodated (entry 7, R) Me, 67%
yield, 86% ee; entry 8, R) t-Bu, 55% yield, 92% ee). Interestingly,
the incorporation of bulky silyl groups to prevent substrate hydroly-
sis (in the case of alkyl substituted enolsilanes) provides slightly
higher enantioselectivities.14 Perhaps most striking, electron rich
heteroaromatic systems that are often susceptible to mild oxidants
are compatible with these organocatalytic conditions (entries 2-3,
70-77% yield,g92% ee). It is important to note that the sense of

asymmetric induction observed in all cases (Tables 1 and 2) is
consistent with addition of the enolsilane to theSi-face of the radical
cation2, in complete accord with the calculated structure DFT-2.

Last, we have observed that the capacity of the putative radical
cation species to undergo intermolecular enolation is dramatically
superior to that of intramolecular cyclohexyl ring formation with
π-neutral olefins (cf. eqs 5 and 6). This finding again demonstrates
the remarkable ability of electron deficient radical cations to
participate in highly chemoselective transformations, a mechanistic
feature not traditionally associated with radical activation.

In summary, the first enantioselective organocatalyticR-enolation
of aldehydes has been accomplished using SOMO catalysis. Further
applications of this new organocatalytic activation mode will be
reported shortly.
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Table 2. Organocatalytic Enolation: Scope of the Enolsilane
Substrate

a Enantioselectivity determined by GLC or SFC analysis.b Stereochem-
istry assigned by chemical correlation or by analogy.c Performed in acetone.
d Performed at-50 °C.
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